A Population Phylogenetic View of Mitochondrial Heteroplasmy.

نویسندگان

  • Peter R Wilton
  • Arslan Zaidi
  • Kateryna Makova
  • Rasmus Nielsen
چکیده

The mitochondrion has recently emerged as an active player in myriad cellular processes. Additionally, it was recently shown that >200 diseases are known to be linked to variants in mitochondrial DNA or in nuclear genes interacting with mitochondria. This has reinvigorated interest in its biology and population genetics. Mitochondrial heteroplasmy, or genotypic variation of mitochondria within an individual, is now understood to be common in humans and important in human health. However, it is still not possible to make quantitative predictions about the inheritance of heteroplasmy and its proliferation within the body, partly due to the lack of an appropriate model. Here, we present a population-genetic framework for modeling mitochondrial heteroplasmy as a process that occurs on an ontogenetic phylogeny, with genetic drift and mutation changing heteroplasmy frequencies during the various developmental processes represented in the phylogeny. Using this framework, we develop a Bayesian inference method for inferring rates of mitochondrial genetic drift and mutation at different stages of human life. Applying the method to previously published heteroplasmy frequency data, we demonstrate a severe effective germline bottleneck comprised of the cumulative genetic drift occurring between the divergence of germline and somatic cells in the mother, and the separation of germ layers in the offspring. Additionally, we find that the two somatic tissues we analyze here undergo tissue-specific bottlenecks during embryogenesis, less severe than the effective germline bottleneck, and that these somatic tissues experience little additional genetic drift during adulthood. We conclude with a discussion of possible extensions of the ontogenetic phylogeny framework and its possible applications to other ontogenetic processes in addition to mitochondrial heteroplasmy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial Diversity and Phylogenetic Structure of Marghoz Goat Population

The genetic diversity and phylogenetic structure was analyzed in Marghoz goat population by mitochondrial DNA sequences. Phylogenetic analysis was carried out using hyper variable region 1 (968 bp) obtained form 40 animals. Marghoz goat proved to be extremely diverse (average haplotype diversity of 0.999) and the nucleotide diversity values 0.022. A total of 40 Marghoz goats were grouped into s...

متن کامل

Phylogenetic incongruence inferred with two mitochondrial genes in Mepraia spp. and Triatoma eratyrusiformis(Hemiptera, Reduviidae)

Mitochondrial DNA (mtDNA) is widely used to clarify phylogenetic relationships among and within species, and to determine population structure. Due to the linked nature of mtDNA genes it is expected that different genes will show similar results. Phylogenetic incongruence using mtDNA genes may result from processes such as heteroplasmy, nuclear integration of mitochondrial genes, polymerase err...

متن کامل

Heteroplasmy and Ancient Translocation of Mitochondrial DNA to the Nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus) Complex

The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific leve...

متن کامل

Frequency and Pattern of Heteroplasmy in the Complete Human Mitochondrial Genome

Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA geno...

متن کامل

Animal mitochondrial DNA recombination revisited

Exchange of homologous sequences between mitochondrial DNA (mtDNA) molecules is thought to be absent in animals, primarily because of a failure to observe clear cases of recombinant haplotypes in natural populations. However, whether mtDNA recombination occurs is a different issue from whether it produces new haplotypes. A requirement for the latter is heteroplasmy – the presence of more than o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 208 3  شماره 

صفحات  -

تاریخ انتشار 2018